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The classical two-dimensional compressible boundary-layer equations supplemented by 
a relation describing the interaction of boundary layer with external inviscid flow 
(see, e.g., [I]) are treated as the governing equations in one of the methods to 
study the viscous-inviscid interaction. It is then necessary in the case of super- 
sonic flow to specify certain downstream boundary conditions for the closure of the 
governing system, i.e., it is a boundary-value problem (e.g., [2]). The "shoot- 
ing" technique for parameters at the beginning of the computational region to ob- 
tain the solution satisfying such a condition usually requires large computer time 
since the integral curves are highly sensitive to small changes in upstream bound- 
ary conditions. A more effective method is the algorithm of global relaxations of 
pressure distribution along the entire computational region [I]. A numerical meth- 
od to compute supersonic interacting boundary layer in the presence of separation 
is presented in this paper. 

I. It is convenient to write the governing equations for a compressible, two-dimen- 
sional boundary layer of a perfect gas by introducing the following nondimensional variables: 
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Here s, n represent orthogonal coordinate system associated with the surface of the body; u, 
v are velocity components; ~ is the coefficient of viscosity; p is the density; H is the 
total enthalpy; Re = upL/~ is the Reynolds number; L is the characteristic body length. The 
indices e and ~ refer to conditions outside the boundary layer and in the supersonic free 
stream. Assuming a linear relation between viscosity and temperature ~/~ = CT/T~ and con- 
stant Prandtl number, the basic equations and the boundary conditions can be written in the 
form 

V" q-F + 2XF=O, 
_ _  d In  M e 
o~%~ F ~_ VF, + 2 ~ ( G _  F ~) = 2XFF, 

(1.1) 
PeUe~e G" - -  V G '  ~- P~[Le  (1 - -  i ) (F2) .  2XFG, 

v(x,  o) = F(X, O) = O, a(X, O) = a~(X) fo~ a'(X, O) = O, F(X, ~)= 
= G ( X ,  o o )  = I, 

where  M i s  t h e  Mach n u m b e r ;  t h e  i n d e x  w d e n o t e s  t h e  s u r f a c e  of  t h e  b o d y ;  d o t s  a nd  p r i m e s  d e -  
n o t e  d i f f e r e n t i a t i o n  w i t h  r e s p e c t  t o  X and  Y. 

I n  o r d e r  t o  t a k e  i n t o  a c c o u n t  v i s c o u s  i n t e r a c t i o n ,  an  e f f e c t i v e  body  t h i c k n e s s  6 = Yw + 
d* i s  i n t r o d u c e d  w h i c h  i s  t h e  sum of  t h e  s u r f a c e  o r d i n a r y  Yw(X) and  b o u n d a r y - l a y e r  d i s p l a c e -  
men t  t h i c k n e s s  6*(X) n o n d i m e n s i o n a l i z e d  u s i n g  t h e  l e n g t h  s c a l e  L.  Then  t h e  d i s t r i b u t i o n  of  
f l o w  v a r i a b l e s  a t  t h e  o u t e r  edge  of  t h e  b o u n d a r y  l a y e r ,  d e t e r m i n i n g  t h e  c o e f f i c i e n t s  of  t h e  
system (i.I), is dependent on the inclination of the streamlines of the outer isentopic flow 
past the effective body. In particular, the variation of Mach number Me(X) or pressure can 
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be computed using ~(X) from the interaction equation representing the Ackeret, Prandtl-Meyer 
equation or the tangential wedge approximation. The presence of the term 6(X) in the ex- 
pression for the pressure gradient makes it necessary to solve the boundary-value problem 
(1.1) with both upstream and downstream boundary conditions. The solution of the problem 
with weak interaction at the initial segment of the body is carried out in this paper to 
obtain velocity and enthalpy profiles and also 61 and Pl on the first computational char- 
acteristic X = Xl. When X = XN in the downstream region of the flow it is generally required 
to make the pressure equal to a previously specified value: p(X N) = PN" 

2. In order to solve the boundary-value problem (1.1), an iterative procedure with 
successive approximations for the distribution of 6(X) is used. For each iteration it is 
required that the function 6(X) satisfies the previously specified boundary conditions 

~(Xl) = 81, ~(X~) = ~ ,  ( 2 . 1 )  

where ,  a c c o r d i n g  to  t he  i n t e r a c t i o n  e q u a t i o n ,  ~N c o r r e s p o n d s  to  t h e  g i v e n  v a l u e  of  t he  b a s e  
p r e s s u r e  a t  X = X N. L e t  t he  d i s t r i b u t i o n  8 ( n ) ( x )  s a t i s f y i n g  c o n d i t i o n  ( 2 . 1 )  be  s p e c i f i e d  a t  
t h e  b e g i n n i n g  of  t h e  n - t h  i t e r a t i o n .  C o e f f i c i e n t s  of  the  s y s t e m  ( 1 . 1 )  a r e  d e t e r m i n e d  u s i n g  
~ ( n ) ( x )  and ~ ( n ) ( x )  a f t e r  which  t h e  i n i t i a l  e q u a t i o n s  a r e  n u m e r i c a l l y  i n t e g r a t e d .  I n  t he  
ca se  of  a t t a c h e d  f l o w  the  t r a d i t i o n a l  m a r c h i n g  t e c h n i q u e  i s  used  and to  compute  s e p a r a t e d  
f l o w s  r e l a x a t i o n  t e c h n i q u e  i s  used  w i t h  v a r i a b l e  d i r e c t i o n  scheme in  a c c o r d a n c e  w i t h  change  
in  t h e  d i r e c t i o n  of  p r o p a g a t i o n  of  d i s t u r b a n c e s  in  t he  r e v e r s e  f l o w  r e g i o n s  [ 3 ] .  The com- 
p u t e d  f l o w  f i e l d s  F ( n ) ( x ,  Y) and G ( n ) ( x ,  Y) make i t  p o s s i b l e  to  o b t a i n  the  d i s t r i b u t i o n  of  
d i s p l a c e m e n t  t h i c k n e s s  and e f f e c t i v e  body t h i c k n e s s  6 ( n ) ( x ) .  In  o r d e r  to  d e t e r m i n e  the  n e x t  
a p p r o x i m a t i o n  6 ( n + l ) ( X )  t h e  f o l l o w i n g  p r o c e d u r e  i s  u sgd :  8 ( n + l ) ( X )  = 8 ( n ) ( x )  + k ( n ) ( x ) ,  where  
t he  f u n c t i o n  A ( n ) ( x )  i s  found  f rom the  s o l u t i o n  of  t h e  b o u n d a r y - v a l u e  p r o b l e m  

a ( n ) -  %A OO = ~e (600 - -  6~)), A (n) (X1) = 0, A (n) (X~) = 0. ( 2 . 2 )  

Here ~l and a2 are positive constants. The iteration is continued until 6 (n) and ~n) satisfy 
the specified relative accuracy E in the entire computational interval [XI, XN]. 

The function 6(n+I)(X) satisfies conditions (2.1) and meets the natural requirement 
8(n+l)(X) § 6(n)(x) if 6(n) (X) -- ~n) (X) § 0 on [Xl, XN]. Observe that the equation of the 
same functional form as (2.2) can be obtained using integral form of initial boundary-layer 
equation. One of the merits of this method is that Eq. (2.2) has a very simple form and in 
order to solve it information is required on the computational flow field only in the form 
of the integral function 6~n)(x). The initial approximation 6(I)(X) necessary for beginning 
the procedure can, in the general case, be any smooth distribution satisfying boundary con- 
ditions (2.2). 

3. The practically important case of the flow past a compression corner was considered 
in all the computational examples. The body configuration and the flow pattern are shown in 
Fig. I. The equation of pressure to a value corresponding to inviscid flow past semi-infinite 
wedge is used as the downstream boundary condition. Transformation of the transverse coor- 
dinate YI = Y/(I + Y) was made in order to improve the accuracy of computations in the near- 
wall flow region. Computations were carried out using finite-difference method with second- 
order accuracy in AX and s and step sizes AX = AYI = 0.02. Numerical analysis of the ef- 
fect of parameter ~I and ~2 on convergence rate showed that for attached flows their values 
should be of the order of 100 and of the order of 0.1 for the separated region. 

The first series of computations corresponded to the case considered in [2] (M~o = 3.0, 
Re~ = I0 s, G w = 0.5, Pr = 0.72). The vertex of the corner with inclination e w was located 
at the point X = 1.55. Ackeret's formula was used as the condition for interaction. Figure 
2 shows pressure distribution along the surface at inclinations 9, 10, and 11 ~ The distri- 

parameter Fig. * = cf~2 (cf is the skin friction bution of the c~ is shown in 3, where cf I 
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drag coefficient based on free stream parameters). The results obtained (continuous curves) 
agree well with computed data [2] (dashed lines). 

The following two numerical cases use tangential wedge approximation for pressure. The 
initial data for the first case are: M~o = 3.0, Re~ = 1.68"104 , G w = I, Pr = I, @w = 10~ The 
continuous lines in Fig. 4 show the pressure distribution and skin friction coefficient along 
the body along with solutions to Navier--Stokes equations [4] (dashed lines) and [5] (dashed-- 
dotted lines). A comparison shows a good agreement of all the data. The second case corre- 

04 G' sponds to the conditions in an experimental study [6]: Moo = 4.0, Re~ = 6.8"I ' w=0 
(adiabatic wall), Pr = 0.72, O w = 10 ~ . The surface pressure distribution obtained in the 
present work is shown in Fig. 5 along with numerical solutions to Navier--Stokes equation [5] 
(dashed line), numerical results of [I] (dashed-dotted line), and experimental data [6] 
(circles). A good agreement of computed and experimental results is observed. 
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